

Bµ ¨o— pA ²jB–TwA jn±« nj »UBñ¯

 ¨o— ¬joŸ On Top -1
? ©¼®Ÿ (Transparent) ”B–{ An ¨o— ð½ ³¯±¢a -2

? ©¼®Ÿ ZnBi »§½†Uv« S§Be pA An Bµ ¨o— ¥ñ{ ³¯±¢a -3
? ©¼®Ÿ nAj(Skin)³Uw±Q An ³«B¯oM ¨n— ³¯±¢a -4

Bµ ¨o— y½Bª¯ ºAoM ²s½° ²±¦] k¯a -5
? ©¼µj nAo› y½Bª¯ ³d–æ …w° nj An ¨o— ð½ ³¯±¢a -6

? ©¼µj SŸoe (Mouse)²nA±{°« BM An (Caption)¬A±¯î ¬°kM¨o— ð½ ³¯±¢a -7
? ©¼®Ÿ »–h« An ºA ³«B¯oM pA |h{« ¬±ñ½C B½ ¨o— ð½ ²¯±¢a -8

? ©¼¯Ÿ ­¼¼íU ²k{ Ao]A shell n±Uwj BM ³Ÿ An ºA ³«B¯oM ¨o— ºo½£nAo› ¬Bñ« ³¯±¢a -9
p°j®½° (TaskBar) ³–¼‹° nA±¯ nj ³«B¯oM ¨o— ³ªŸj ¬joŸ »–h« -10

? ©¼µj y½Bª¯ ºo¢½j ¨o— „w° nj An ¨o— ð½ ³¯±¢a -11
? ©½n°C SwkM An ¤Bí— ²«B¯oM ¨o— ¬A±¯î ³¯±¢a -12

?jBTwo— »î±ªî ºBµo¼’U« pA ²jB–TwA ¬°kM , ¨o— ð½ ³M An ºo¼’T« ¬A±U »« ³¯±¢a -13
? ©½pBw oLi BM ºnB] ¨o— nj »UB¼¦ªî ¨B\¯A pA An ³«B¯oM o¢½j ¨o— ³¯±¢a -14

? ©¼½Bª¯ o¼½’U ¥MB›o¼“ An ¨o— ð½ ²pAk¯A ° ¬Bñ« ³¯±¢a -15
(TITLE BAR) ¬A±¯î nA±¯ ºnBñUwj -16

 ¨n— (!ð§ñ{)¬±ñ½C (Animation)»½Bª¯B½±Q -17

¨o— ¬joŸ On Top -1

³d–æ nj (Bµ ¨o— ¨BªU º°n)Bµ ¨o— ¨BªU pA oUA§BM ²nA±ªµ ³Ÿ SwA »«o— On Top ¨n—
/j±{ »« oµB‹ y½Bª¯

: ¤BX«
»«o— k¼¯A±U »« k{BM ³U{Aj ±Äj½° B½° ¬±½q½±¦U ³M »]°ni Bª{ »ñ¼—An£ RnBŸ o£A

k½pAk®¼M y½Bª¯ ¤Be nj ©¦¼— º°n Ao¯C »ª¦¼— y½Bª¯ ¨B¢®µ nj ° k¼®Ÿ Swnj On Top
pA Bª{ nBñ¯½A BM /k¼®Ÿ ‰Mƒ ±Äk½° ™½o‡ pA An yhQ ¤Be nj o½°B~U Œ±ª\« uPw °
º°n ³T{±¯ ð½ B½ °o½±~U ð½ ­TiAk¯A ºAoM Sª¼› ¬Ao£ »ñ¼—An£ ºBµ RnBŸ ¬U{Aj

 /k{ k¼µA±i ”Bí« ©¦¼— pA ³š¼›j k®a

Option Explicit

Public Declare Function SetWindowPos Lib "user32" _
 (ByVal hwnd As Long, _
 ByVal hWndInsertAfter As Long, _
 ByVal x As Long, ByVal y As Long, _
 ByVal cx As Long, ByVal cy As Long, _
 ByVal wFlags As Long) As Long

Global Const SWP_NOMOVE = 2
Global Const SWP_NOSIZE = 1
Global Const FLAGS = SWP_NOMOVE Or SWP_NOSIZE
Global Const HWND_TOPMOST = -1
Global Const HWND_NOTOPMOST = -2

Sub setTopMost(frm As Form, ByVal enabled As Boolean)
Dim res, FLAGS
FLAGS = SWP_NOMOVE Or SWP_NOSIZE
If enabled = True Then
 res = SetWindowPos(frm.hwnd, HWND_TOPMOST, _
 0, 0, 0, 0, FLAGS)
 'if res=0, there is an error
Else
 'To turn off topmost (make the form act normal again):
 res = SetWindowPos(frm.hwnd, HWND_NOTOPMOST, _
 0, 0, 0, 0, FLAGS)
End If
End Sub

: ¤BY«

Private Sub Form_Load()
 setTopMost Me, True
End Sub

? ©¼®Ÿ (Transparent) ”B–{ An ¨o— ð½ ³¯±¢a -2

- Ao]A An ³«B¯oM ° k½µj nAo› ¨o— º°n An ¤oT®Ÿ k®a k¼¯¼LM An ²±¦] ­½A k½¯A±TM ³Ÿ®½A ºAoM

/k¼®Ÿ

Private Declare Function CreateRectRgn Lib "gdi32" _
 (ByVal X1 As Long, ByVal Y1 As Long, _
 ByVal X2 As Long, ByVal Y2 As Long) As Long

Private Declare Function CombineRgn Lib "gdi32" _
 (ByVal hDestRgn As Long, ByVal hSrcRgn1 As Long, _
 ByVal hSrcRgn2 As Long, ByVal nCombineMode As Long) As Long

Private Declare Function SetWindowRgn Lib "user32" _
 (ByVal hWnd As Long, ByVal hRgn As Long, _
 ByVal bRedraw As Long) As Long

Public Sub TransparentForm(frm As Form)
 frm.ScaleMode = vbPixels
 Const RGN_DIFF = 4
 Const RGN_OR = 2

 Dim outer_rgn As Long
 Dim inner_rgn As Long
 Dim wid As Single
 Dim hgt As Single
 Dim border_width As Single
 Dim title_height As Single
 Dim ctl_left As Single
 Dim ctl_top As Single
 Dim ctl_right As Single
 Dim ctl_bottom As Single
 Dim control_rgn As Long
 Dim combined_rgn As Long
 Dim ctl As Control

 If frm.WindowState = vbMinimized Then Exit Sub

 ' Create the main form region.
 wid = frm.ScaleX(frm.Width, vbTwips, vbPixels)
 hgt = frm.ScaleY(frm.Height, vbTwips, vbPixels)
 outer_rgn = CreateRectRgn(0, 0, wid, hgt)

 border_width = (wid - frm.ScaleWidth) / 2
 title_height = hgt - border_width - frm.ScaleHeight
 inner_rgn = CreateRectRgn(border_width, title_height, _
 wid - border_width, hgt - border_width)

 ' Subtract the inner region from the outer.
 combined_rgn = CreateRectRgn(0, 0, 0, 0)
 CombineRgn combined_rgn, outer_rgn, inner_rgn, RGN_DIFF

 ' Create the control regions.
 For Each ctl In frm.Controls
 If ctl.Container Is frm Then
 ctl_left = frm.ScaleX(ctl.Left, frm.ScaleMode, vbPixels) _
 + border_width
 ctl_top = frm.ScaleX(ctl.Top, frm.ScaleMode, vbPixels) _
 + title_height
 ctl_right = frm.ScaleX(ctl.Width, frm.ScaleMode, vbPixels) _
 + ctl_left
 ctl_bottom = frm.ScaleX(ctl.Height, frm.ScaleMode, _
 vbPixels) + ctl_top
 control_rgn = CreateRectRgn(ctl_left, ctl_top, ctl_right, _

 ctl_bottom)
 CombineRgn combined_rgn, combined_rgn, control_rgn, RGN_OR
 End If
 Next ctl

 'Restrict the window to the region.
 SetWindowRgn frm.hWnd, combined_rgn, True
 End Sub

: ¤BY«

Private Sub Form_Resize()
 TransparentForm Me
End Sub

: o¢½j »î±¯

Option Explicit

Private Type BITMAP
 bmType As Long
 bmWidth As Long
 bmHeight As Long
 bmWidthBytes As Long
 bmPlanes As Integer
 bmBitsPixel As Integer
 bmBits As Long
End Type
Private Declare Function GetBitmapBits Lib "gdi32" (_
 ByVal hBitmap As Long, ByVal dwCount As Long, lpBits As Any) As Long
Private Declare Function GetObject Lib "gdi32" Alias "GetObjectA" _
 (ByVal hObject As Long, ByVal nCount As Long, lpObject As Any) _
 As Long
Private Declare Function CreateRectRgn Lib "gdi32" (_
 ByVal x1 As Long, _
 ByVal y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As Long
Private Declare Function CombineRgn Lib "gdi32" (_
ByVal hDestRgn As Long, ByVal hSrcRgn1 As Long, _
ByVal hSrcRgn2 As Long, ByVal nCombineMode As Long) As Long
Private Declare Function SetWindowRgn Lib "user32" (_
 ByVal hWnd As Long, ByVal hRgn As Long, ByVal bRedraw As Long) _
 As Long
Private Declare Function DeleteObject Lib "gdi32" (_
 ByVal hObject As Long) As Long

' Restrict the form to its non-white pixels.
Private Sub FitToPicture()
Const RGN_OR = 2

Dim border_width As Single
Dim title_height As Single
Dim bm As BITMAP
Dim bytes() As Byte
Dim R As Integer
Dim C As Integer
Dim start_c As Integer
Dim stop_c As Integer
Dim x0 As Long
Dim y0 As Long
Dim combined_rgn As Long
Dim new_rgn As Long
Dim offset As Integer
Dim colourDepth As Integer

 ScaleMode = vbPixels

 picShape.ScaleMode = vbPixels
 picShape.AutoRedraw = True
 picShape.Picture = picShape.Image

 ' Find the form's corner.
 border_width = (ScaleX(Width, vbTwips, vbPixels) _
 - ScaleWidth) / 2
 title_height = ScaleX(Height, vbTwips, vbPixels) _
 - border_width - ScaleHeight

 ' Find the picture's corner.
 x0 = picShape.Left + border_width
 y0 = picShape.Top + title_height

 ' Get the bitmap information.
 GetObject picShape.Image, Len(bm), bm
 Select Case bm.bmBitsPixel
 Case 24:
 colourDepth = 3
 Case 32:
 colourDepth = 4
 Case Else
MsgBox "Sorry, this program only works for 24-bit or 32-bit color." _
 & vbCrLf & "For information on color modes, "& _
 "go to www.vb-helper.com/highclr.htm"
 Exit Sub
 End Select

 ' Allocate space for the bitmap data.
 ReDim bytes(0 To bm.bmWidthBytes - 1, 0 To bm.bmHeight - 1)

 ' Get the bitmap data.
 GetBitmapBits picShape.Image, _
 bm.bmHeight * bm.bmWidthBytes, bytes(0, 0)

 ' Create the form's regions.
 For R = 0 To bm.bmHeight - 2
 ' Create a region for this row.
 C = 0
 Do While C < bm.bmWidth
 start_c = 0
 stop_c = 0

 ' Find the next non-white column.

 ' calculate the initial offset
 offset = C * colourDepth

 Do While C < bm.bmWidth
 If bytes(offset, R) <> 255 Or _
 bytes(offset + 1, R) <> 255 Or _
 bytes(offset + 2, R) <> 255 Then Exit Do

 C = C + 1
 offset = offset + colourDepth
 Loop

 start_c = C

 ' Find the next white column.
 ' Note the offset will be set correctly
 Do While C < bm.bmWidth
 If bytes(offset, R) = 255 And _
 bytes(offset + 1, R) = 255 And _
 bytes(offset + 2, R) = 255 _
 Then Exit Do
 C = C + 1
 offset = offset + colourDepth
 Loop
 stop_c = C

http://www.vb-helper.com/highclr.htm

 ' Make a region from start_c to stop_c.
 If start_c < bm.bmWidth Then
 If stop_c >= bm.bmWidth Then stop_c = bm.bmWidth - 1

 ' Create the region.
 new_rgn = CreateRectRgn(_
 start_c + x0, R + y0, _
 stop_c + x0, R + y0 + 1)

 ' Add it to what we have so far.
 If combined_rgn = 0 Then
 combined_rgn = new_rgn
 Else
 CombineRgn combined_rgn, _
 combined_rgn, new_rgn, RGN_OR
 DeleteObject new_rgn
 End If
 End If
 Loop
 Next R

 ' Restrict the form to the region.
 SetWindowRgn hWnd, combined_rgn, True
 DeleteObject combined_rgn
End Sub
Private Sub picShape_Click()
 Unload Me
End Sub

Private Sub Form_Load()
 ' Center the form.
 Move (Screen.Width - Width) / 2, (Screen.Height - Height) / 2

 FitToPicture
End Sub

? ©¼®Ÿ ZnBi »§½†Uv« S§Be pA An Bµ ¨o— ¥ñ{ ³¯±¢a -3

? ©¼®Ÿ nAj(Skin)³Uw±Q An ³«B¯oM ¨n— ³¯±¢a -4

 ³Ÿ S{Aj ³]±U k½BM /jpBw »« ­ñª« An »¦¼†Tv«o¼“ ºBµ ¨o— jB\½A SetWindowRgn éMBU
k½BM »í¦ƒ k®a) k®{BM »« »ñ½ ¨o— ¥ñ{ o¼¼’U ºAoM oŠ¯ jn±« »í¦ƒ k®a oiC ° ¤°A „Bš¯

/joM nBñM ¬A±U »« q¼¯ ¨n— º°n ºBµ ¤oT¯Ÿ ºAoM An o½p éMA±U /(j°{ ³TwM Rn±æ ¬½A ³M
/k®{BM »« »í¦ƒ k®a ¤°A ³†š¯ RB~Th« o½p ¤BX« nj Points(0).X ° Points(0).Y
:k¼®ñ¯ x±«Ao— An o½p RnBLî ¬jn°Cnj p°n ³M k½j°q—A o½p ³«B¯oM „Bš¯ ³M An »‡Bš¯ o£A

Dim Points(0 To 3) As POINTAPI

 ³Ÿ n±†¯Aªµ /k®Ÿ »« ²jB–TwA éMBU ºj°n° ¬B«±£nC ¬A±®íM shapePoints(0)pA o½p ¤BX«
±ƒî ­¼§°A tnjC k½BM C ¬BMp éMA±U ³M ¬B«±£nC ¬A±¯íM Bµ ³½AnC ¬jBTwn— ºAoM k¼¯Aj »«

/jAj nAn› ²jB–TwA jn±« An ³½AnC ¬C

Option Explicit

Declare Function CreatePolygonRgn Lib "gdi32" _
 (lpPoint As POINTAPI, ByVal nCount As Long, _
 ByVal nPolyFillMode As Long) As Long

Declare Function SetWindowRgn Lib "user32" _
 (ByVal hWnd As Long, ByVal hRgn As Long, _
 ByVal bRedraw As Boolean) As Long

Declare Function Polyline Lib "gdi32" _
 (ByVal hdc As Long, lpPoint As POINTAPI, _
 ByVal nCount As Long) As Long

Public Type POINTAPI
 X As Long
 Y As Long
End Type

Declare Function CreateEllipticRgn Lib "gdi32" _
 (ByVal X1 As Long, ByVal Y1 As Long, _
 ByVal X2 As Long, ByVal Y2 As Long) As Long

Dim Result As Long

Public Sub ShapeTheControlOrForm(shapePoints() _
 As POINTAPI, ctrlToShape As Object)
 Dim n, hRgn
 n = UBound(shapePoints()) + 1
 hRgn = CreatePolygonRgn(shapePoints(0), n, 1)
 Result = SetWindowRgn(ctrlToShape.hWnd, hRgn, True)
End Sub

Sub drawTheShape(shapePoints() As POINTAPI, frm As Form)
 Dim n
 n = UBound(shapePoints()) + 1
 Call Polyline(frm.hdc, shapePoints(0), n)
End Sub

Public Sub restoreTheShape(obj As Object)
 Result = SetWindowRgn(obj.hWnd, 0, True)
End Sub

Public Sub makeEllipticWindow(hWnd As Long, X1 As Long, _
 Y1 As Long, X2 As Long, Y2 As Long)
 Dim lRetVal As Long, lRgn As Long
 'Create an elliptic region
 lRgn = CreateEllipticRgn(X1, Y1, X2, Y2)
 'Make the window look like the region we created
 lRetVal = SetWindowRgn(hWnd, lRgn, True)
End Sub

: ¤BX«
 uPw ° k¼µj nAo› ¬C º°n ˜±— ºBµ ¥ñ{ ™MB‡« ³ªŸj nB´a° k¼®ŸpAM k½k] ²r°oQ ð½

:k¼®Ÿ jnA° An o½p kŸ

Private Points(0 To 3) As POINTAPI

Private Sub Command1_Click()
 Call ShapeTheControlOrForm(Points, Me)
End Sub

Private Sub Command2_Click()
 Call drawTheShape(Points, Me)
End Sub

Private Sub Command3_Click()
 restoreTheShape Me
End Sub

Private Sub Command4_Click()
 makeEllipticWindow Me.hWnd, 0, 0, 300, 300
End Sub

Private Sub Form_Load()
 Points(0).X = 150
 Points(0).Y = 250
 Points(1).X = 0
 Points(1).Y = 0
 Points(2).X = 300
 Points(2).Y = 0
 Points(3).X = 150
 Points(3).Y = 250
End Sub

: ¤BX«

 'Polygon region - This draws a points
 Points(0).X = 231: Points(0).Y = 12
 Points(1).X = 220: Points(1).Y = 57
 Points(2).X = 259: Points(2).Y = 31
 Points(3).X = 209: Points(3).Y = 31
 Points(4).X = 245: Points(4).Y = 57
 Points(5).X = 231: Points(5).Y = 12

: o¢½j »î±¯

Option Explicit

Private Declare Function CreatePolygonRgn Lib "gdi32" (_
 lpPoint As POINTAPI, ByVal nCount As Long, _
 ByVal nPolyFillMode As Long) As Long
Private Declare Function SetWindowRgn Lib "user32" (_
 ByVal hWnd As Long, ByVal hRgn As Long, _
 ByVal bRedraw As Boolean) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (_
 ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (_
 ByVal hObject As Long) As Long
Private Declare Function FillRgn Lib "gdi32" (ByVal hDC As Long, _
 ByVal hRgn As Long, ByVal hBrush As Long) As Long
Private Declare Function GetSystemMetrics Lib "user32" (_
 ByVal nIndex As Long) As Long
Private Declare Function Polyline Lib "gdi32" (ByVal hDC As Long, _
 lpPoint As POINTAPI, ByVal nCount As Long) As Long

Private Declare Function SendMessage Lib "user32" Alias _
 "SendMessageA" (ByVal hWnd As Long, ByVal wMsg As Long, _
 ByVal wParam As Long, lParam As Any) As Long
Private Declare Function ReleaseCapture Lib "user32" () As Long
Private Declare Function GetCursorPos Lib "user32" (_
 lpPoint As POINTAPI) As Long

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type

Private Type POINTAPI
 X As Long
 Y As Long
End Type

Private scnPts() As POINTAPI
Private rgnPts() As POINTAPI

Private Const SM_CYCAPTION = 4
Private Const SM_CXFRAME = 32
Private Const SM_CYFRAME = 33

' PolyFill() Modes
Private Const ALTERNATE = 1
Private Const WINDING = 2

' Used to support captionless drag
Private Const WM_NCLBUTTONDOWN = &HA1
Private Const HTCAPTION = 2
' Undocumented message constant.
Private Const WM_GETSYSMENU = &H313

Private m_FillMode As Long
Private Const nPts& = 36

Private Sub Command1_Click()
 Dim hRgn As Long
 Static UsingPoly As Boolean
 '
 ' Flag variable tracks current state.
 '
 UsingPoly = Not UsingPoly
 If UsingPoly Then
 '
 ' Create a region, then turn on
 ' clipping to that region.
 '
 hRgn = CreatePolygonRgn(rgnPts(0), nPts, m_FillMode)
 Call SetWindowRgn(Me.hWnd, hRgn, True)
 Else
 '
 ' Turn off clipping.
 '
 Call SetWindowRgn(Me.hWnd, 0&, True)
 End If

 Timer1.Enabled = UsingPoly
End Sub

Private Sub Form_Load()
 m_FillMode = ALTERNATE
 With Me
 .ScaleMode = vbPixels
 .Width = Screen.Width \ 2
 .Height = .Width
 .Move (Screen.Width - .Width) \ 2, _
 (Screen.Height - .Height) \ 2
 .Icon = Nothing
 End With
End Sub

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
 '
 ' Allow captionless drag if form is clipped to region
 '
 If Button = vbLeftButton Then
 If Timer1.Enabled Then
 Call ReleaseCapture
 Call SendMessage(Me.hWnd, WM_NCLBUTTONDOWN, HTCAPTION, ByVal 0&)
 End If
 End If
End Sub

Private Sub Form_MouseUp(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
 Dim pt As POINTAPI

 ' This is relative to the screen, so we can't
 ' use the coordinates passed in the event
 Call GetCursorPos(pt)

 If Button = vbRightButton Then
 If Timer1.Enabled Then
 Call SendMessage(Me.hWnd, WM_GETSYSMENU, 0, _
 ByVal MakeLong(pt.Y, pt.X))
 End If
 End If
End Sub

Private Sub Form_Paint()
 Dim hBrush As Long
 Dim hRgn As Long
 '
 ' Create region and a brush to fill it with.
 '
 hBrush = CreateSolidBrush(vbRed)
 hRgn = CreatePolygonRgn(scnPts(0), nPts, m_FillMode)
 Call FillRgn(Me.hDC, hRgn, hBrush)
 '
 ' Clean up GDI objects.
 '
 Call DeleteObject(hRgn)
 Call DeleteObject(hBrush)
 '
 ' Draw outline around polygon.
 '
 Call Polyline(Me.hDC, scnPts(0), nPts + 1)
End Sub

Private Sub Form_Resize()
 With Me
 Command1.Move (.ScaleWidth - Command1.Width) \ 2, _
 (.ScaleHeight - Command1.Height) \ 2
 If .Visible Then
 CalcRgnPoints
 .Refresh
 End If
 End With
End Sub

Private Static Sub CalcRgnPoints()
 ReDim scnPts(0 To nPts) As POINTAPI
 ReDim rgnPts(0 To nPts) As POINTAPI
 Dim offset As Long
 Dim angle As Long
 Dim theta As Double
 Dim radius1 As Long
 Dim radius2 As Long
 Dim x1 As Long
 Dim y1 As Long
 Dim xOff As Long
 Dim yOff As Long
 Dim n As Long

 '
 ' Some useful constants.
 '
 Const Pi# = 3.14159265358979
 Const DegToRad# = Pi / 180
 '
 ' Calc radius based on form size.
 '
 x1 = Me.ScaleWidth \ 2
 y1 = Me.ScaleHeight \ 2
 If x1 > y1 Then
 radius1 = y1 * 0.85
 Else
 radius1 = x1 * 0.85
 End If
 radius2 = radius1 * 0.5
 '
 ' Offsets to move origin to upper
 ' left of window.
 '
 xOff = GetSystemMetrics(SM_CXFRAME)
 yOff = GetSystemMetrics(SM_CYFRAME) + _
 GetSystemMetrics(SM_CYCAPTION)
 '
 ' Step through a circle, 10 degrees each
 ' loop, finding points for polygon.
 '
 n = 0
 For angle = 0 To 360 Step 10
 theta = (angle - offset) * DegToRad
 '
 ' First region is for drawing.
 ' One long, one short, one long...
 '
 If n Mod 2 Then
 scnPts(n).X = x1 + (radius1 * (Sin(theta)))
 scnPts(n).Y = y1 + (radius1 * (Cos(theta)))
 Else
 scnPts(n).X = x1 + (radius2 * (Sin(theta)))
 scnPts(n).Y = y1 + (radius2 * (Cos(theta)))
 End If
 '
 ' Second region is for clipping.
 ' Add offsets.
 '
 rgnPts(n).X = scnPts(n).X + xOff
 rgnPts(n).Y = scnPts(n).Y + yOff
 n = n + 1
 Next angle

 offset = (offset + 2) Mod 360
End Sub

Private Sub Option1_Click(Index As Integer)
 m_FillMode = Index + 1
End Sub

Private Static Sub Timer1_Timer()
 Dim nRet As Long
 Dim hRgn As Long

 CalcRgnPoints
 hRgn = CreatePolygonRgn(rgnPts(0), nPts, m_FillMode)
 nRet = SetWindowRgn(Me.hWnd, hRgn, True)
End Sub

Public Function MakeLong(ByVal WordHi As Variant, _
 ByVal WordLo As Integer) As Long
 '
 ' High word is coerced to a variant on call to allow
 ' it to overflow limits of multiplication which shifts
 ' it left.
 '
 MakeLong = (WordHi * &H10000) + (WordLo And &HFFFF&)
End Function

Bµ ¨o— y½Bª¯ ºAoM ²s½° ²±¦] k¯a -5

: ! ¨o— ¬k{ o\–®«
'Declarations

#If Win16 Then
 Type RECT
 Left As Integer
 Top As Integer
 Right As Integer
 Bottom As Integer
 End Type
#Else
 Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
 End Type
#End If

'User and GDI Functions for Explode/Implode to work

#If Win16 Then
 Declare Sub GetWindowRect Lib "User" (ByVal hwnd As Integer, _
 lpRect As RECT)
 Declare Function GetDC Lib "User" (ByVal hwnd As Integer) As _
 Integer
 Declare Function ReleaseDC Lib "User" (ByVal hwnd As Integer, _
 ByVal hdc As Integer) As Integer
 Declare Sub SetBkColor Lib "GDI" (ByVal hdc As Integer, ByVal _
 crColor As Long)
 Declare Sub Rectangle Lib "GDI" (ByVal hdc As Integer, ByVal X1 _
 As Integer, ByVal Y1 As Integer, ByVal X2 As Integer, ByVal Y2 As _
 Integer)
 Declare Function CreateSolidBrush Lib "GDI" (ByVal crColor As _
 Long) As Integer
 Declare Function SelectObject Lib "GDI" (ByVal hdc As Integer, _
 ByVal hObject As Integer) As Integer
 Declare Sub DeleteObject Lib "GDI" (ByVal hObject As Integer)
#Else
 Declare Function GetWindowRect Lib "user32" (ByVal hwnd As Long, _

 lpRect As RECT) As Long
 Declare Function GetDC Lib "user32" (ByVal hwnd As Long) As Long
 Declare Function ReleaseDC Lib "user32" (ByVal hwnd As Long, _
 ByVal hdc As Long) As Long
 Declare Function SetBkColor Lib "gdi32" (ByVal hdc As Long, _
 ByVal crColor As Long) As Long
 Declare Function Rectangle Lib "gdi32" (ByVal hdc As Long, _
 ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, _
 ByVal Y2 As Long) As Long
 Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor _
 As Long) As Long
 Declare Function SelectObject Lib "user32" (ByVal hdc As Long, _
 ByVal hObject As Long) As Long
 Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long _
) As Long
#End If

'**
'*Description:
'*The higher the "Movement", the slower the window explosion.
'**

Sub ExplodeForm(f As Form, Movement As Integer)
 Dim myRect As RECT
 Dim formWidth%, formHeight%, i%, X%, Y%, Cx%, Cy%
 Dim TheScreen As Long
 Dim Brush As Long

 GetWindowRect f.hwnd, myRect
 formWidth = (myRect.Right - myRect.Left)
 formHeight = myRect.Bottom - myRect.Top
 TheScreen = GetDC(0)
 Brush = CreateSolidBrush(f.BackColor)

 For i = 1 To Movement
 Cx = formWidth * (i / Movement)
 Cy = formHeight * (i / Movement)
 X = myRect.Left + (formWidth - Cx) / 2
 Y = myRect.Top + (formHeight - Cy) / 2
 Rectangle TheScreen, X, Y, X + Cx, Y + Cy
 Next i

 X = ReleaseDC(0, TheScreen)
 DeleteObject (Brush)

End Sub

Public Sub ImplodeForm(f As Form, Direction As Integer, _
 Movement As Integer, ModalState As Integer)
'**
'*Description:
'*The larger the "Movement" value, the slower the "Implosion"
'**

 Dim myRect As RECT
 Dim formWidth%, formHeight%, i%, X%, Y%, Cx%, Cy%
 Dim TheScreen As Long
 Dim Brush As Long

 GetWindowRect f.hwnd, myRect

 formWidth = (myRect.Right - myRect.Left)
 formHeight = myRect.Bottom - myRect.Top
 TheScreen = GetDC(0)
 Brush = CreateSolidBrush(f.BackColor)

 For i = Movement To 1 Step -1
 Cx = formWidth * (i / Movement)
 Cy = formHeight * (i / Movement)
 X = myRect.Left + (formWidth - Cx) / 2
 Y = myRect.Top + (formHeight - Cy) / 2
 Rectangle TheScreen, X, Y, X + Cx, Y + Cy
 Next i

 X = ReleaseDC(0, TheScreen)
 DeleteObject (Brush)

End Sub

///° k¼µj nAo› ¬C º°n ºA³ªŸj ° k¼®ŸpAM k½k] ²r°oQ ð½ : ¤BX«

Private Sub Command1_Click()
 Call ImplodeForm(Me, 2, 500, 1)
 End
 Set Form1 = Nothing
End Sub

Private Sub Form_Load()
 Call ExplodeForm(Me, 500)
End Sub

Private Sub Form_QueryUnload(Cancel As Integer, _
 UnloadMode As Integer)
 Call ImplodeForm(Me, 2, 500, 1)
End Sub

: o¢½j »î±¯

Public Sub Form_Animation_Opener(_
 your_form As Form, _
 ByVal loop_step As Integer, _
 ByVal how_open As Integer _
)

Dim f_h, f_w, i, j

'your_form.ScaleMode = 3
 f_w = your_form.Width
 f_h = your_form.Height

Select Case how_open

 Case Is = 1
 For i = 0 To f_h Step loop_step
 your_form.Height = i
 your_form.Show
 Next i

Case Is = 2
 For i = 0 To f_w Step loop_step
 your_form.Width = i

 your_form.Show
 Next i

Case Is = 3

 your_form.Height = 0
 For i = 0 To f_w Step loop_step
 your_form.Width = i
 your_form.Show
 'DoEvents
 Next i
 For i = 0 To f_h Step loop_step
 your_form.Height = i
 your_form.Show
 'DoEvents
 Next i

Case Is = 4

 For i = 0 To f_w Step loop_step
 your_form.Height = j
 your_form.Width = i
 your_form.Show
 If j < f_h Then j = j + loop_step
 Next i

End Select

End Sub

Public Sub form_Animation_Closer(_
 your_form As Form, _
 loop_step As Integer)
On Error GoTo Exit_sub

Dim f_h, f_w, i, j

f_w = your_form.Width
f_h = your_form.Height

For i = f_h To 0 Step loop_step
 your_form.Height = i
 your_form.Show
 DoEvents
Next i

For i = f_w To 0 Step loop_step
 your_form.Width = i
 your_form.Show
 DoEvents
Next i

Exit_sub:

End Sub

: ¤BX«
Private Sub Form_Load()
 Form_Animation_Opener Me, 2, 3
End Sub

Private Sub Form_Unload(Cancel As Integer)
 form_Animation_Closer Form1, -2
 Me.WindowState = 1
End Sub

? ©¼µj nAo› y½Bª¯ ³d–æ …w° nj An ¨o— ð½ ³¯±¢a -6

Public Sub Center_This_Form(f As Form)
 f.Move (Screen.Width - f.Width) \ 2, _
 (Screen.Height - f.Height) \ 2
End Sub

: ¤BX«

Private Sub Form_Load()
 Center_This_Form Me
End Sub

? ©¼µj SŸoe (Mouse)²nA±{°« BM An (Caption)¬A±¯î ¬°kM¨o— ð½ ³¯±¢a -7

Sub moveform(ff As Form, xx, yy, bt)
 Static oldx, oldy, mf
 Dim moveleft, movetop
 moveleft = ff.Left + xx - oldx
 movetop = ff.Top + yy - oldy
 If bt = vbLeftButton Then
 If mf = 0 Then
 ff.Move moveleft, movetop
 ff.Refresh
 mf = 1
 Else
 mf = 0
 End If
 End If
 oldx = xx
 oldy = yy
End Sub

: ¤BX«

Private Sub Form_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 moveform Me, X, Y, Button
End Sub

: ¨°j ²An

Public Const WM_SYSCOMMAND = &H112
Public Const SC_MOVE = &HF010&
Public Declare Function ReleaseCapture Lib "user32" () _
 As Long

Public Declare Function SendMessage Lib "user32" Alias _
 "SendMessageA" (ByVal hwnd As Long, _
 ByVal wMsg As Long, _
 ByVal wParam As Long, _

 lParam As Any) As Long

: ¤BX«

Private Sub Form_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 If Button = 1 Then ' Left button
 ReleaseCapture
 ret = SendMessage(Me.hwnd, WM_SYSCOMMAND, _
 SC_MOVE, 0)
 End If
End Sub

? ©¼®Ÿ »–h« An ºA ³«B¯oM pA |h{« ¬±ñ½C B½ ¨o— ð½ ²¯±¢a -8

Public Const SW_ERASE = &H4
Public Const SW_HIDE = 0
Public Const SW_INVALIDATE = &H2
Public Const SW_MAX = 10
Public Const SW_MAXIMIZE = 3
Public Const SW_MINIMIZE = 6
Public Const SW_NORMAL = 1
Public Const SW_OTHERUNZOOM = 4
Public Const SW_OTHERZOOM = 2
Public Const SW_PARENTCLOSING = 1
Public Const SW_PARENTOPENING = 3
Public Const SW_RESTORE = 9
Public Const SW_SCROLLCHILDREN = &H1
Public Const SW_SHOW = 5
Public Const SW_SHOWDEFAULT = 10
Public Const SW_SHOWMAXIMIZED = 3
Public Const SW_SHOWMINIMIZED = 2
Public Const SW_SHOWMINNOACTIVE = 7
Public Const SW_SHOWNA = 8
Public Const SW_SHOWNOACTIVATE = 4
Public Const SW_SHOWNORMAL = 1
Public Const SWP_FRAMECHANGED = &H20
Public Const SWP_DRAWFRAME = SWP_FRAMECHANGED
Public Const SWP_HIDEWINDOW = &H80
Public Const SWP_NOACTIVATE = &H10
Public Const SWP_NOCOPYBITS = &H100
Public Const SWP_NOMOVE = &H2
Public Const SWP_NOOWNERZORDER = &H200
Public Const SWP_NOREDRAW = &H8
Public Const SWP_NOREPOSITION = SWP_NOOWNERZORDER
Public Const SWP_NOSIZE = &H1
Public Const SWP_NOZORDER = &H4
Public Const SWP_SHOWWINDOW = &H40

Public Declare Function FindWindow Lib "user32" Alias _
 "FindWindowA" (ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Long

Public Declare Function ShowWindow Lib "user32" _
 (ByVal hwnd As Long, ByVal nCmdShow As Long) As Long

: ¤BX«

Sub Form_Load()
 Dim Handle As Long
 Handle = FindWindow(0, "Document - WordPad")
 Call ShowWindow(Handle, SW_HIDE)
End Sub

? ©¼¯Ÿ ­¼¼íU ²k{ Ao]A shell n±Uwj BM ³Ÿ An ºA ³«B¯oM ¨o— ºo½£nAo› ¬Bñ« ³¯±¢a -9

Public Declare Function SetWindowPos Lib "user32" _
 (ByVal hwnd As Long, ByVal hWndInsertAfter As Long, _
 ByVal x As Long, ByVal y As Long, ByVal cx As Long, _
 ByVal cy As Long, ByVal wFlags As Long) As Long

: ¤BX«

Sub Form_Load()
Dim r
Dim myhWnd

 r = Shell("Notepad c:\autoexec.bat", 1)
 DoEvents ' Let the app load completely
 'Get the executable window handle based on window's title
 myhWnd = FindWindow(0, "Notepad - AUTOEXEC.BAT")
 ' Move the window to the desired location
 ' Parms 3 and 4 are top and left,
 ' 5 and 6 are window height and width
 SetWindowPos myhWnd, -1, 10, 10, 200, 300, _
 SWP_SHOWWINDOW
End Sub

p°j®½° (TaskBar) ³–¼‹° nA±¯ nj ³«B¯oM ¨o— ³ªŸj ¬joŸ »–h« -10

Public Declare Function SetWindowLong Lib "user32" Alias _
 "SetWindowLongA" (ByVal hwnd As Long, _
 ByVal nIndex As Long, ByVal dwNewLong As Long) As Long

Public Const GWL_EXSTYLE = (-20)
Public Const WS_EX_TOOLWINDOW = &H80&

Public Sub setShowInTaskbar(_
 Visible As Boolean, hwnd As Long)
 Dim L As Long

 L = ShowWindow(hwnd, SW_HIDE)
 DoEvents
 L = SetWindowLong(hwnd, GWL_EXSTYLE, _
 IIf(Visible, -WS_EX_TOOLWINDOW, WS_EX_TOOLWINDOW))
 DoEvents
 L = ShowWindow(hwnd, SW_SHOW)
End Sub

: ¤BX«

Private Sub Command1_Click()
 setShowInTaskbar False, Me.hwnd
 MsgBox "click here!"

 setShowInTaskbar True, Me.hwnd
End Sub

? ©¼µj y½Bª¯ ºo¢½j ¨o— „w° nj An ¨o— ð½ ³¯±¢a -11

Option Explicit

Public Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Public Declare Function GetWindowRect Lib "user32" _
 (ByVal hwnd As Long, lpRect As RECT) As Long

Sub DialogCenterParent(_
 ByVal hWndParent As Integer, frmDialog As Form)
Dim iLeft As Integer
Dim iTop As Integer
Dim iMidX As Integer
Dim iMidY As Integer
Dim rcParent As RECT

' Find the ideal center point.
If hWndParent = 0 Then
 'No parent, so center over the enter screen
 iMidX = Screen.Width / 2
 iMidY = Screen.Height / 2
Else

'Center over the form's parent.

Call GetWindowRect(hWndParent, rcParent)
 ' Next 2 lines as one single line.
 iMidX = ((rcParent.Left * Screen.TwipsPerPixelX) _
 + (rcParent.Right * Screen.TwipsPerPixelY)) / 2
 ' Next 2 lines as one single line.
 iMidY = ((rcParent.Top * Screen.TwipsPerPixelY) _
 + (rcParent.Bottom * Screen.TwipsPerPixelY)) / 2
End If

' Find the form's upper left based on that

iLeft = iMidX - (frmDialog.Width / 2)
iTop = iMidY - (frmDialog.Height / 2)

' If the form is outside the screen, move it inside

If iLeft < 0 Then
 iLeft = 0
 ElseIf (iLeft + frmDialog.Width) > Screen.Width Then
 iLeft = Screen.Width - frmDialog.Width
End If

If iTop < 0 Then
 iTop = 0
 ElseIf (iTop + frmDialog.Height) > Screen.Height Then
 iTop = Screen.Height - frmDialog.Height
End If

' Move the form to it's new position
frmDialog.Move iLeft, iTop

End Sub

: ¤BX«

Private Sub Command1_Click()
 Form2.Show
 DialogCenterParent Me.hwnd, Form2
End Sub

? ©½n°C SwkM An ¤Bí— ²«B¯oM ¨o— ¬A±¯î ³¯±¢a -12

Option Explicit

Private Declare Function GetWindowTextLength Lib "user32" _
 Alias "GetWindowTextLengthA" (ByVal hWnd As Long) As Long

Private Declare Function GetWindowText Lib "user32" Alias _
 "GetWindowTextA" (ByVal hWnd As Long, _
 ByVal lpString As String, _
 ByVal cch As Long) As Long

Private Declare Function GetForegroundWindow Lib _
 "user32" () As Long

Private Declare Function GetParent Lib "user32" _
 (ByVal hWnd As Long) As Long

' Returns the handle of the active window.
' if GetParent = true then the parent window is
' returned.
Public Function GetActiveWindow(_
 ByVal ReturnParent As Boolean) As Long
 Dim i As Long
 Dim j As Long

 i = GetForegroundWindow
 If ReturnParent Then
 Do While i <> 0
 j = i
 i = GetParent(i)
 Loop
 i = j
 End If
 GetActiveWindow = i
End Function

Public Function GetWindowTitle(_
 ByVal hWnd As Long) As String
 Dim L As Long
 Dim s As String
 L = GetWindowTextLength(hWnd)
 s = Space(L + 1)
 GetWindowText hWnd, s, L + 1
 GetWindowTitle = Left$(s, L)
End Function

: ¤BX«

Private Sub Command1_Click()
 MsgBox GetWindowTitle(GetActiveWindow(False))
End Sub

»î±ªî ºBµo¼’U« pA ²jB–TwA ¬°kM , ¨o— ð½ ³M An ºo¼’T« ¬A±U »« ³¯±¢a -13
?jBTwo—

¨o— º°n An »–h« ­T« ³Lí] ð½ ³Ÿ SwA ­½A nBŸ ­½A ¨B\¯A ºAoM jnAk¯BTwA x°n

 ºnAkš« Form.myTextbox.Text="Value" n±Twj BM o¢½j »«o— nj tPw ° k¼µj nAn›
 k¼¯A±U»« ¤oT¯Ÿ ¬C Change jAkin ¤A°n pA ²jB–TwA BM uPw /k¼Uwo–M ²A±h§j ¨o— ¬C ³M An

/k¼®Ÿ ¬BdU«A q¼¯ An ¤oT®Ÿ Tag S¼æBi /k¼µj ¨B\¯A ¨o— ¬C nj An j±i oŠ¯ jn±« nBŸ

? ©½pBw oLi BM ºnB] ¨o— nj »UB¼¦ªî ¨B\¯A pA An ³«B¯oM o¢½j ¨o— ³¯±¢a -14

° jpBw »« jnA° An jkî °j oMnBŸ B´¯C pA »Ÿ½ nj ³Ÿ jnAj ¨o— °j B«{ ³«B¯oM k¼®Ÿ ço—
 Rn±æ ¨°j ¨o— nj Bµ ²jAj ­½A º°n »UB¼¦ªî ° ²jnŸ ð¼¦Ÿ ³LwBd« ³ªŸj º°n uPw

 x°n ð½/k®Ÿ •›±T« ºA ³Šd§ An j±iRBLwBd« ³î±ª\« ³Ÿ jnAj ¨p¿ ¨°j ¨o— ° jo¼£ »«
: SwA o½p Rn±æ ³M ¬C ¨B\¯A

Private Sub Command1_Click()
Dim Myform as frmEntry
Set Myform = New frmEntry
With Myform
 .Show
 Do
 DoEvents
 Loop Until Myform.Ready
 'Do some calculations based on the entry
 txtResults = .txtNum1 * .txtNum2
End With
Unload frm
Set frm = Nothing
End Sub

²B£C RBîÀ‡A j°n° ­T—B½ ¬B½BQ pA An ¨°j ¨n— ³Ÿ »«±ªî SwA ºo¼’U« Ready o¼’T«
”n~« An ©Uv¼w pA ºjB½p éMA®« B«A SwA ºn°nƒ DoEvents éMBU j±]° /jpBw »«

: k{BM »« jAkin ¤A°n jA\½A oT´M ²An /k®Ÿ »«

Public Event NumbersSubmitted()
Public NumOne As Long
Public NumTwo As Long

Private Sub cmdSubmit_Click()
NumOne = CLng(txtNum1)

NumTwo = CLng(txtNum2)
Unload Me
RaiseEvent NumbersSubmitted
End Sub

jB]½A ¬A±U »« ²k{ ð½odU jAkin ³M ¬jAj gwBQ ºAoM An o½p ¤A°n »¦æA ¨o— nj uPw
/joŸ

Private Sub frmNumEntry_NumbersSubmitted()
With frmNumEntry
 txtResults = .NumOne * .NumTwo
 Set frmNumEntry = Nothing
End With
End Sub

: ¨o— c†w nj »«±ªî SwA ºo¼’T« frmNumEntry

Dim WithEvents frmNumEntry As frmNumberEntry

? ©¼½Bª¯ o¼½’U ¥MB›o¼“ An ¨o— ð½ ²pAk¯A ° ¬Bñ« ³¯±¢a -15

 : o¼½’U ¥MB›o¼“ ²pAk¯A

Option Explicit
Public OldWindowProc As Long ' Original window proc

' Function to retrieve the address of the current Message-Handling
' routine
Declare Function GetWindowLong Lib "user32" Alias "GetWindowLongA" _
 (ByVal hwnd As Long, ByVal nIndex As Long) As Long
' Function to define the address of the Message-Handling routine
Declare Function SetWindowLong Lib "user32" Alias "SetWindowLongA" _
(ByVal hwnd As Long, ByVal nIndex As Long, ByVal dwNewLong As Long) _
 As Long
' Function to copy an object/variable/structure passed by reference
' onto a variable of your own
Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" (pDest _
 As Any, pSource As Any, ByVal ByteLen As Long)
' Function to execute a function residing at a specific memory
' address
Declare Function CallWindowProc Lib "user32" Alias _
"CallWindowProcA" _
(ByVal lpPrevWndFunc As Long, ByVal hwnd As Long, _
 ByVal Msg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long

' This is the message constant
Public Const WM_GETMINMAXINFO = &H24

' This is a structure referenced by the MINMAXINFO structure
Type POINTAPI
 x As Long
 y As Long
End Type

' This is the structure that is passed by reference (ie an address)
' to your message handler
' The key items in this structure are ptMinTrackSize and
' ptMaxTrackSize
Type MINMAXINFO
 ptReserved As POINTAPI
 ptMaxSize As POINTAPI
 ptMaxPosition As POINTAPI
 ptMinTrackSize As POINTAPI
 ptMaxTrackSize As POINTAPI
End Type
Public Function SubClass1_WndMessage(ByVal hwnd As Long, _
 ByVal Msg As Long, ByVal wp As Long, ByVal lp As Long) As Long

 ' Watch for the pertinent message to come in
 If Msg = WM_GETMINMAXINFO Then

 Dim MinMax As MINMAXINFO

 ' This is necessary because the structure was passed by its
 ' address and there
 ' is currently no intrinsic way to use an address in Visual
 ' Basic
 CopyMemory MinMax, ByVal lp, Len(MinMax)

 ' This is where you set the values of the MinX,MinY,MaxX, and
 ' MaxY
 ' The values placed in the structure must be in pixels. The
 ' values
 ' normally used in Visual Basic are in twips. The conversion
 ' is as follows:
 ' pixels = twips\twipsperpixel
 MinMax.ptMinTrackSize.x = 3975 \ Screen.TwipsPerPixelX
 MinMax.ptMinTrackSize.y = 1740 \ Screen.TwipsPerPixelY
 MinMax.ptMaxTrackSize.x = Screen.Width \ _
 Screen.TwipsPerPixelX \ 2
 MinMax.ptMaxTrackSize.y = 3480 \ Screen.TwipsPerPixelY

 ' Here we copy the datastructure back up to the address
 ' passed in the parameters
 ' because Windows will look there for the information.
 CopyMemory ByVal lp, MinMax, Len(MinMax)

 ' This message tells Windows that the message was handled
 ' successfully
 SubClass1_WndMessage = 1
 Exit Function

 End If

 ' Here, we forward all irrelevant messages on to the default
 ' message handler.

 SubClass1_WndMessage = CallWindowProc(OldWindowProc, hwnd, Msg, _
 wp, lp)

End Function

: ¤BX«

Option Explicit

' This constant is used to refer to the Message Handling function in
' a given window
Private Const GWL_WNDPROC = (-4)
Private Sub Form_Load()

 ' First, we need to store the address of the existing Message
 ' Handler
 OldWindowProc = GetWindowLong(Me.hWnd, GWL_WNDPROC)

 ' Now we can tell windows to forward all messages to out own
 ' Message Handler
 Call SetWindowLong(Me.hWnd, GWL_WNDPROC, _
 AddressOf SubClass1_WndMessage)

End Sub

Private Sub Form_Unload(Cancel As Integer)

 ' We must return control of the messages back to windows before
 ' the program exits
 Call SetWindowLong(Me.hWnd, GWL_WNDPROC, OldWindowProc)

End Sub

: o¼½’U ¥MB›o¼“ ¬Bñ«

Option Explicit
' Used to get menu information.
Private Type MENUITEMINFO
 cbSize As Long
 fMask As Long
 fType As Long
 fState As Long
 wID As Long
 hSubMenu As Long
 hbmpChecked As Long
 hbmpUnchecked As Long
 dwItemData As Long
 dwTypeData As String
 cch As Long
End Type

' Menu information constants.
Private Const MIIM_STATE As Long = &H1
Private Const MIIM_ID As Long = &H2
Private Const MIIM_SUBMENU As Long = &H4
Private Const MIIM_CHECKMARKS As Long = &H8
Private Const MIIM_TYPE As Long = &H10
Private Const MIIM_DATA As Long = &H20

' System menu command values commonly used by VB.
Private Const SC_SIZE = &HF000&

Private Const SC_MOVE = &HF010&
Private Const SC_MINIMIZE = &HF020&
Private Const SC_MAXIMIZE = &HF030&
Private Const SC_CLOSE = &HF060&
Private Const SC_RESTORE = &HF120&

' Enumerated sysmenu items.
Public Enum SysMenuItems
 smRestore = SC_RESTORE
 smMove = SC_MOVE
 smSize = SC_SIZE
 smMinimize = SC_MINIMIZE
 smMaximize = SC_MAXIMIZE
 smClose = SC_CLOSE
End Enum

' Used to select which menu to remove.
Private Const MF_BYCOMMAND = &H0&
Private Const MF_BYPOSITION = &H400

' Toggles enabled state of menu item.
Private Const MF_ENABLED = &H0&
Private Const MF_GRAYED = &H1&
Private Const MF_DISABLED = &H2&

Private Declare Function GetSystemMenu Lib "user32" (ByVal hWnd As _
 Long, ByVal revert As Long) As Long
Private Declare Function GetMenuItemCount Lib "user32" (ByVal hMenu _
 As Long) As Long
Private Declare Function GetMenuItemID Lib "user32" (ByVal hMenu As _
 Long, ByVal nPos As Long) As Long
Private Declare Function GetMenuItemInfo Lib "user32" Alias _
 "GetMenuItemInfoA" (ByVal hMenu As Long, ByVal un As Long, _
 ByVal b As Long, lpMenuItemInfo As MENUITEMINFO) As Long
Private Declare Function SetMenuItemInfo Lib "user32" Alias _
 "SetMenuItemInfoA" (ByVal hMenu As Long, ByVal un As Long, _
ByVal bool As Long, lpcMenuItemInfo As MENUITEMINFO) As Long

Private Function GetMenuItemPosition(frm As Form, _
 ByVal MenuItem As SysMenuItems) As Long
 Dim hMenu As Long
 Dim ID As Long
 Dim i As Long
 Const HighBit As Long = &H8000&

 ' Default to returning -1 in case of
 ' failure, since menu is 0-based.
 GetMenuItemPosition = -1

 ' Retrieve handle to system menu.
 hMenu = GetSystemMenu(frm.hWnd, False)

 ' Loop through system menu, scanning
 ' for requested standard menu item.
 For i = 0 To GetMenuItemCount(hMenu) - 1
 ID = GetMenuItemID(hMenu, i)
 If ID = MenuItem Then
 ' Return position of normal
 ' enabled menu item.

 GetMenuItemPosition = i
 Exit For
 ElseIf ID = (MenuItem And Not HighBit) Then
 ' This item is disabled.
 ' Return position and alter
 ' MenuItem with new ID.
 MenuItem = ID
 GetMenuItemPosition = i
 Exit For
 End If
 Next i
End Function

Public Sub EnableMenuItem(frm As Form, _
 ByVal MenuItem As SysMenuItems, _
 Optional ByVal Enabled As Boolean = True)
 ' This routine is automatically called whenever the
 ' MinButton, MaxButton, or Movable properties are
 ' set.
 Dim hMenu As Long
 Dim nPosition As Long
 Dim uFlags As Long
 Dim mii As MENUITEMINFO
 Const HighBit As Long = &H8000&

 ' Retrieve handle to system menu.
 hMenu = GetSystemMenu(frm.hWnd, False)

 ' Translate ID to position.
 nPosition = GetMenuItemPosition(frm, MenuItem)
 If nPosition >= 0 Then

 ' Initialize structure.
 mii.cbSize = Len(mii)
 mii.fMask = MIIM_STATE Or MIIM_ID Or MIIM_DATA Or MIIM_TYPE
 mii.dwTypeData = String$(80, 0)
 mii.cch = Len(mii.dwTypeData)
 Call GetMenuItemInfo(hMenu, nPosition, MF_BYPOSITION, mii)

 ' Set appropriate state.
 If Enabled Then
 mii.fState = MF_ENABLED
 Else
 mii.fState = MF_GRAYED
 End If

 ' New ID uses highbit to signify that
 ' the menu item is enabled.
 If Enabled Then
 mii.wID = MenuItem
 Else
 mii.wID = MenuItem And Not HighBit
 End If

 ' Modify the menu!
 mii.fMask = MIIM_STATE Or MIIM_ID
 Call SetMenuItemInfo(hMenu, nPosition, MF_BYPOSITION, mii)
 End If
End Sub

Private Function GetMenuItemState(ByVal hMenu As Long, ByVal
nPosition As Long) As Long
 Dim mii As MENUITEMINFO

 ' Initialize structure.
 mii.cbSize = Len(mii)
 mii.fMask = MIIM_STATE
 Call GetMenuItemInfo(hMenu, nPosition, MF_BYPOSITION, mii)

 ' Return current state.
 GetMenuItemState = mii.fState
End Function

Public Sub setMoveable(frm As Form, ByVal Value As Boolean)
 ' Toggle SC_MOVE menu appropriately.
 Call EnableMenuItem(frm, smMove, Value)
End Sub

Public Function isMoveable(frm As Form) As Boolean
 ' Return whether SC_MOVE menu is enabled.
 isMoveable = Not CBool(GetMenuItemState(_
 GetSystemMenu(frm.hWnd, False), _
 GetMenuItemPosition(frm, smMove)))
End Function

: ¤BX«

Private Sub Command1_Click()
 setMoveable Me, False
End Sub

Private Sub Command2_Click()
 MsgBox isMoveable(Me)
End Sub

(TITLE BAR) ¬A±¯î nA±¯ ºnBñUwj -16

Option Explicit

Public OldWindowProc As Long

Private Declare Function CallWindowProc Lib "user32" Alias
"CallWindowProcA" (ByVal lpPrevWndFunc As Long, ByVal hwnd As Long,
ByVal msg As Long, ByVal wParam As Long, ByVal lParam As Long) As
Long
Private Declare Function DefWindowProc Lib "user32" Alias
"DefWindowProcA" (ByVal hwnd As Long, ByVal wMsg As Long, ByVal
wParam As Long, ByVal lParam As Long) As Long
' ***
' Display message names.
' ***
Public Function NewWindowProc(ByVal hwnd As Long, ByVal msg As Long,
ByVal wParam As Long, ByVal lParam As Long) As Long
Const WM_NCPAINT = &H85
Const WM_ACTIVATE = &H6
Const WM_NCACTIVATE = &H86
Const WM_MDIACTIVATE = &H222
Const WM_SETTEXT = &HC
Const WM_SYSCOMMAND = &H112
Const SC_CLOSE = &HF060&

 ' Assume we will return True.
 NewWindowProc = True

 ' Process messages.
 Select Case msg
 Case WM_NCPAINT
 DefWindowProc hwnd, msg, wParam, lParam
 Form1.PaintActive

 Case WM_NCACTIVATE
 If wParam Then
 ' The form is active.
 DefWindowProc hwnd, msg, wParam, lParam
 Form1.PaintActive
 Else
 ' The form is inactive.
 DefWindowProc hwnd, msg, wParam, lParam
 Form1.PaintInactive
 End If

 Case WM_SETTEXT
 DefWindowProc hwnd, msg, wParam, lParam
 Form1.PaintActive

 Case WM_SYSCOMMAND
 DefWindowProc hwnd, msg, wParam, lParam
 If wParam <> SC_CLOSE Then
 Form1.PaintActive
 End If

 Case Else
 ' Invoke the original WindowProc.
 NewWindowProc = CallWindowProc(_
 OldWindowProc, hwnd, msg, wParam, _
 lParam)
 End Select
End Function

: ¤BX«

Option Explicit

Private Declare Function SetWindowLong Lib "user32" Alias _
 "SetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long
Private Declare Function GetWindowDC Lib "user32" (_
 ByVal hwnd As Long) As Long
Private Declare Function ReleaseDC Lib "user32" (_
 ByVal hwnd As Long,
 ByVal hdc As Long) As Long
Private Declare Function GetSystemMetrics Lib "user32" (_
 ByVal nIndex As Long) As Long
Private Declare Function BitBlt Lib "gdi32" (ByVal hDestDC As Long, _
ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, _
ByVal nHeight As Long, ByVal hSrcDC As Long, _
ByVal xSrc As Long, ByVal ySrc As Long, ByVal dwRop As Long) As Long

Private Const GWL_WNDPROC = (-4)
Private Const SM_CXFRAME = 32
Private Const SM_CYFRAME = 33
Private Const SM_CXSIZE = 30
Private Const SM_CYCAPTION = 4
Private Const SRCCOPY = &HCC0020

' Install the new WindowProc.
Private Sub Form_Load()
 ' This reduces flicker.
 Caption = ""

 ' Draw the caption on the PictureBoxes.
 picActive.AutoRedraw = True
 picActive.ScaleMode = vbPixels
 picActive.CurrentX = 2
 picActive.CurrentY = 2
 picActive.Font.Bold = True
 picActive.Print "GradMenu"

 picInactive.AutoRedraw = True
 picInactive.ScaleMode = vbPixels
 picInactive.CurrentX = 2
 picInactive.CurrentY = 2
 picInactive.Font.Bold = True
 picInactive.Print "GradMenu"

 OldWindowProc = SetWindowLong(_
 hwnd, GWL_WNDPROC, _
 AddressOf NewWindowProc)
End Sub

' Paint the title bar for an active form.
Public Sub PaintActive()
Dim window_dc As Long
Dim border_width As Long
Dim border_height As Long
Dim title_button_width As Long
Dim wid As Long
Dim hgt As Long

 window_dc = GetWindowDC(hwnd)
 border_width = GetSystemMetrics(SM_CXFRAME)
 border_height = GetSystemMetrics(SM_CYFRAME)
 title_button_width = GetSystemMetrics(SM_CXSIZE)

 ' Get the width of the area to draw. This is our
 ' width in pixels, minus 2 times the border width,
 ' minus room for the three buttons on the right.
 wid = ScaleX(Width, vbTwips, vbPixels) - _
 2 * border_width - _
 3 * title_button_width

 ' Get the height of the area to draw. This is
 ' the height of a normal caption minus 1 pixel.
 hgt = GetSystemMetrics(SM_CYCAPTION) - 1

 ' Paint the title bar.
 BitBlt window_dc, border_width, border_height, _
 wid, hgt, picActive.hdc, 0, 0, SRCCOPY

 ' Release the window's DC.
 ReleaseDC hwnd, window_dc
End Sub
' Paint the title bar for an inactive form.
Public Sub PaintInactive()
Dim window_dc As Long
Dim border_width As Long
Dim border_height As Long
Dim title_button_width As Long
Dim wid As Long
Dim hgt As Long

 window_dc = GetWindowDC(hwnd)
 border_width = GetSystemMetrics(SM_CXFRAME)
 border_height = GetSystemMetrics(SM_CYFRAME)
 title_button_width = GetSystemMetrics(SM_CXSIZE)

 ' Get the width of the area to draw. This is our
 ' width in pixels, minus 2 times the border width,
 ' minus room for the three buttons on the right.
 wid = ScaleX(Width, vbTwips, vbPixels) - _
 2 * border_width - _
 3 * title_button_width

 ' Get the height of the area to draw. This is
 ' the height of a normal caption minus 1 pixel.
 hgt = GetSystemMetrics(SM_CYCAPTION) - 1

 ' Paint the title bar.
 BitBlt window_dc, border_width, border_height, _
 wid, hgt, picInactive.hdc, 0, 0, SRCCOPY

 ' Release the window's DC.
 ReleaseDC hwnd, window_dc
End Sub

 ¨n— (!ð§ñ{)¬±ñ½C (Animation)»½Bª¯B½±Q -17

 ³£oM nj Ao¯C Enabled° ³U{Am£ tmrICON Ao¯C ¨B¯ , k¼µj nAn› ¨o— º°n Timer ¤oT¯Ÿ ð½

/k¼µj nAo› 1000oMAoM p¼¯ Ao¯C Interval /k¼¯Ÿ False |A±i
 »ñ½ B´¯C ¨B¯ ¬±a /k¼µj nAo› ¨o— º°n pictIcon ¨B¯ ð½ BM Picture Box ¤oT®Ÿ °j

/k¼¯Ÿ False An °joµ ¬j±M »Äo« S¼æBi /k{ kµA±i ¥¼ñzU B´¯C pA »§oT¯Ÿ ³½AnC ð½ SwA
: k¼®Ÿ ³—BƒA ¨o— ³M An o½p kŸ uPw ° /k¼µj nAo› ¬±ñ½C ð½ ¨AkŸoµ o½±~U Sªv› nj

Private Sub Form_Resize()
If Me.WindowState = 1 Then
 tmrIcon.Enabled = True
Else
 tmrIcon.Enabled = False
End If
End Sub

Private Sub tmrIcon_Timer()
If Me.Icon <> pictIcon(0).Picture Then
 Me.Icon = pictIcon(0).Picture
Else
 Me.Icon = pictIcon(1).Picture
End If
End Sub

 /k¼®Ÿ Minimize An ¨o— , ³«B¯oM ºAo]A pA uQ

: é]Ao« ° éMB®«

http://developer.ecorp.net
http://www.vb-helper.com
http://www.cadvision.com
http://www.vbworld.com
http://www.Abstractvb.com
http://www.mvps.org/vb

http://developer.ecorp.net
http://www.vb-helper.com
http://www.cadvision.com
http://www.vbworld.com
http://www.Abstractvb.com
http://www.mvps.org/vb

